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We show that optical light bullets can coexist with double bullet complexes in nonlinear dissipative systems.
Coexistence occurs for a relatively large range of the system parameters, and is associated with either marginal
stability or bistable existence of the two dissipative soliton species. In the case of marginal stability, sponta-
neous transformations of single bullets into double bullet complexes are observed. Among the bistable cases,
we show how both clockwise and anticlockwise rotating double bullet complexes can be formed out of the
phase-controlled interaction of two single bullets. The internal dynamics of pulsating double bullet complexes,
with oscillations in both the spatial separation between the two bullets and the bullet shape in time domain is
also detailed.

DOI: 10.1103/PhysRevE.74.046612 PACS number�s�: 42.65.Tg, 47.20.Ky

I. INTRODUCTION

A common delusion about dissipative systems is that they
can only have losses and thus only decaying solutions. The
name “Dissipative system” was coined by Nikolis and Pri-
gogine �1� for systems considered in nonequilibrium thermo-
dynamics. These systems are not isolated, but are kept in
contact with an external source that provides energy for the
smaller subsystem. Thus dissipation is essential for the trans-
fer of pumped energy to a “cooler.” Hence the notion “dis-
sipative system” is more complicated. It assumes that there is
also an energy supply part, rather than just losses. Localized
structures in these systems, i.e., “dissipative solitons” have
their own right to be an established scientific keyword �2�.

The term “optical bullet� was invented by Silberberg �3�
to depict a complete spatiotemporal soliton, for which con-
finement in the three spatial dimensions and localization in
the temporal domain are achieved by the balance between a
focusing nonlinearity and the spreading due to chromatic dis-
persion and angular diffraction. This occurs while propaga-
tion takes place in the medium. The additional balance be-
tween gain and loss in dissipative systems provides the shape
rigidity of the bullet. In the latter case, they can be called
optical dissipative bullets.

Dissipative optical systems admit solitons in one, two,
and three dimensions �4�. These formations are stable on
propagation, provided the system parameters are chosen in
special regions. In addition to stationary solitons, there are
pulsating ones which also exist in separate regions of the
parameter space. For one- and two-dimensional solitons, the
regions of their existence have been studied extensively. The
three-dimensional case is still mainly beyond our knowledge.

Dissipative solitons can be considered as elementary
building blocks of more complicated structures and patterns
in dissipative systems. Thus knowledge of their properties is

crucial for understanding the behavior of the system itself.
Stable solitons usually have a fixed shape, and the way
they are combined into pairs and higher order composite
structures is one of the major questions in these studies.

Exact analytical soliton solutions do exist in the case of
the one-dimensional cubic-quintic complex Ginzburg-
Landau equation �CCGLE�, although all of them have
proved to be unstable �5�. Stable solutions of the
�1+1�-dimensional CCGLE were found only numerically,
and it is expected that, in the two- and three-dimensional
cases the only hope to find localized structures is by using
numerical simulations.

Recently, we have numerically demonstrated the existence
of stable light bullets using the three-dimensional CCGLE
model in both regimes of chromatic dispersion �7,8�. We also
studied temporal elongation processes of optical bullets in
the normal dispersion regime �transformation into “rockets”�.
In the present work, we concentrate on the conditions of
coexistence of an optical dissipative bullet and a double bul-
let complex, as well as on the process of the spontaneous
transformation of a single bullet into a double bullet com-
plex. A double bullet complex is a localized structure that
can be also stationary, pulsating, and rotating. Each behavior
is primarily defined by the choice of the parameters of the
system and to a lesser extent by the choice of the initial
condition. We have found that the stability region of double
bullet complexes can overlap with the stability region for
single bullets. This causes them to exist simultaneously and
creates the possibility of mutual transformations.

An interesting property of double bullet complexes is that
their energy can be constant or oscillate with single or double
periods. When the total energy of a double bullet complex is
constant, it is higher than the sum of the energies of two
separate bullets, thus indicating a positive binding energy of
the complex.
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The existence of a binding energy in a double bullet com-
plex calls for an analogy with the case of a diatomic mol-
ecule. Although there are similarities, there are marked dif-
ferences too: a stable diatomic molecule of matter can be
considered as an isolated system in which the total energy is
conserved, and the binding energy should be negative. A
double dissipative bullet complex is an open system which
requires a continuous supply of energy, and there are no con-
served quantities for this system. However, the possible ex-
istence of long term stability of these complexes makes the
comparison with molecules sustainable, and the analogy can
be even quite useful when studying the possible internal pul-
sations of complexes, as we shall see in Secs. IV and V.
Recently, the “optical soliton molecule” terminology ap-
peared explicitly in the titles of published literature and was
employed to depict stable aggregates in one-dimensional
�1D� or three-dimensional �3D� conservative nonlinear sys-
tems �9,10�. We should emphasize that in the case of conser-
vative nonlinear systems, there is only marginal stability, so
that Hamiltonian “optical molecules” are not stationary and
turn to be decaying in the long term. In contrast, our study
indicates that the long term stability of a dissipative “optical
molecule” relies, when it exists, on the existence of an
attractor for the evolution of the dynamical system.

II. NUMERICAL SIMULATIONS

Our numerical simulations are based on an extended com-
plex cubic-quintic Ginzburg-Landau equation �CCQGLE�
model. This model includes cubic and quintic nonlinearities
of dispersive and dissipative types, and we have added trans-
verse operators to take into account spatial diffraction in the
paraxial wave approximation. The normalized propagation
equation reads

i�z +
D

2
�tt +

1

2
�xx +

1

2
�yy + ���2� + ����4�

= i�� + i����2� + i��tt + i����4� . �1�

The optical envelope � is a complex function of four real
variables �=��x ,y , t ,z�, where t is the retarded time in the
frame moving with the pulse, z is the propagation distance,
and x and y are the two transverse coordinates. Equation �1�
is written in normalized form. The left-hand side contains the
conservative terms, viz. D= +1�−1� which is for the anoma-
lous �normal� dispersion propagation regime and � which is
the saturation coefficient of the Kerr nonlinearity. In the fol-
lowing, the dispersion can have either sign, and the satura-
tion of the Kerr nonlinearity is kept relatively small. The
right-hand side includes all dissipative terms: �, �, �, and �
are the coefficients for linear loss �if negative�, nonlinear
gain �if positive�, spectral filtering, and saturation of the
nonlinear gain �if negative�, respectively.

This distributed equation could be applied to the modeling
of a wide-aperture laser cavity in the short pulse regime of
operation. The model includes the effects of two-dimensional
transverse diffraction of the beam, longitudinal dispersion of
the pulse, and its evolution along the cavity. Dissipative
terms describe the gain and loss of the pulse in the cavity.

Higher-order dissipative terms are responsible for the nonlin-
ear transmission characteristics of the cavity which allows,
for example, passive mode-locking. This equation is a natu-
ral extension of the one-dimensional complex cubic-quintic
Ginzburg-Landau equation �CCQGLE�.

We have solved Eq. �1� using a split-step Fourier method.
Thus the second-order derivative terms in x, y, and t are
solved in Fourier space. Consequently, we apply periodic
boundary conditions in x, y, and t. All other linear and non-
linear terms in the equation are solved in real space using a
fourth-order Runge-Kutta method. Most of the simulations
presented in the paper were done using a numerical grid of
256 points in each of the three dimensions x, y, and t. We
used various values of step sizes along the spatial and tem-
poral domains to check that the results do not depend on the
mesh intervals, thus avoiding any numerical artifacts. A typi-
cal numerical run presented in this work takes from several
hours to several days on a standard modern PC.

In the �1+1�D case, the cubic-quintic CGLE admits soli-
ton solutions. Moreover, several solutions can exist for the
same set of parameters �6�. Not all of them are necessarily
stable. The stability is controlled by the parameters of the
equation and by the choice of the soliton branch. In this
paper we deal with �3+1�D solitons or optical bullets. We
showed in Refs. �7,8� that, in the case of anomalous disper-
sion as well as for normal dispersion, Eq. �1� admits 3D
dissipative solitons, i.e., optical bullets. We show now that
this equation also has stable pulsating solutions in both re-
gimes of dispersion. Pulsating solutions turn out to be double
bullet complexes, as we have found. The main task is to find
a set of parameters where stationary or pulsating solitons
exist. In general, we fix five of the parameters, namely D, �,
�, �, and �, and change � when looking for stable localized
solutions. The initial conditions must be localized when we
are looking for localized structures. Their exact shape is rel-
evant but plays a secondary role if only one type of optical
bullet exists for a given set of parameters. The shape be-
comes highly important when several stable solutions coex-
ist. Once a certain kind of localized solution is found for a
given set of equation parameters, it can serve as the initial
condition for finding solutions at other nearby values of the
parameters. By moving slowly in the parameter space, we
are able to determine the regions of soliton existence in a
relatively easy way.

The natural control parameter of the solution as it evolves
is the total energy Q, given by the three-dimensional integral
of ���2 over x, y, and t:

Q�z� = �
−�

�

���x,y,t,z��2dxdydt . �2�

For a dissipative system, the energy is not conserved but
evolves in accordance with the so-called balance equation
�11�. If the solution stays localized, the energy evolves but
remains finite. Furthermore, when a stationary solution is
reached, the energy Q converges to a constant value. When
the optical field spreads out, the energy tends to infinity.
Another possibility is that the solution dissipates, and then
the energy goes to zero. However, if the optical bullet is a
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pulsating one, the energy Q is an oscillating function of z.
We observed all these scenarios in numerical simulations.

III. STATIONARY OPTICAL BULLETS

Figure 1�a� shows an example of the evolution of the
energy Q along z towards a stationary solution, when we
start the simulation with a localized initial condition, such
as one with a Gaussian profile in the three dimensions. As
our master equation is radially symmetric in space, it
seems natural to choose an initial condition that possesses
the same symmetry in the �x ,y� plane. Specifically, the initial
condition that we have chosen is

��x,y,t,0� = 4 exp�− t2 − � x

1.2
	2

− � y

1.2
	2
 . �3�

This initial condition has an energy Q that is lower than that
for the optical bullet at the chosen set of parameters. Figure
1�a� shows that the energy Q initially increases, but finally
converges to a constant value, thus confirming the fact that
the localized solution itself tends to converge to a stationary
profile.

As expected, the stationary solution is a radially symmet-
ric object in the �x ,y�-plane. The radial �dashed line� and

temporal �solid line� profiles of this stationary solution
are shown in Fig. 1�b�. These curves represent ��o�r , t�� vs
r=�x2+y2 at t=0 and ��o�r , t�� at r=0, respectively. The sub-
script 0 indicates the asymptotic profile when z→�, i.e.,
when the stationary solution has been reached. The param-
eters of the simulation are written inside Fig. 1�b�. We can
see that, in this case, the temporal profile of the bullet is very
similar to, though slightly broader than, that of the radial
profile.

Lifting the spatial radial symmetry of the initial condition
does not necessarily create a more complicated solution. So-
lutions without the radial symmetry can be unstable in this
range of parameters and the resulting solution is then the one
with a symmetric single bullet profile. For example, the
initial condition with a strongly elliptic shape

��x,y,t,0� = 4 exp�− t2 − � x

1.1
	2

− � y

1.5
	2
 �4�

evolves in a way that reduces ellipticity. Finally it converges
to the same radially symmetric optical bullet that was
reached when using the initial input given by Eq. �3�. This
process is shown in Fig. 2. There are decaying oscillations of
the elliptical profile of the bullet and corresponding oscilla-
tions of the energy before the convergence but the final state,
when the oscillations have died out, has the same energy as
in Fig. 1�a�. For comparison, the dashed line in Fig. 2 shows
the evolution when the initial condition is given by Eq. �3�
�the same curve as in Fig. 1�.

We can notice that convergence from an elliptic initial
condition is much slower than for the initial condition �3�.
This means that stable configurations with elliptic shape may
exist for this set of parameters or for a close set of param-
eters. Thus in order to find a region with optical bullets
which lack radial symmetry, we can slightly shift the param-
eters from the values given in Fig. 1�b�. This study is the
subject of the following section.

FIG. 1. �a� Total energy Q of the optical bullet defined by Eq.
�2� vs propagation distance z for the initial condition given by
Eq. �3�. The curve shows the convergence of the localized solution
towards a stationary optical bullet. �b� Radial �dashed line�
��r , t=0,z→�� and temporal �solid line� ��r=0, t ,z→�� profiles
of the stable stationary optical bullet. Parameters of the equation for
these simulations are shown in �b�.

FIG. 2. Energy Q vs propagation distance z when simulations
are started from an elliptic localized initial condition �4� �solid line�.
Dashed line is the same as in Fig. 1�a�. A wide range of localized
initial conditions, with or without radial symmetry, converge to the
same stable bullet.
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IV. PULSATING OPTICAL BULLETS AND DOUBLE
BULLET COMPLEXES

Pulsating optical bullets can be found the same way as
stationary solitons. These solutions can be considered as
limit cycles and, similarly to the fixed points of a dynamical
system, they can be stable or unstable. The solution con-
verges to a pulsating optical bullet if the latter is one of the
stable attractors that the dynamical system possesses for a
given set of parameters. A pulsating solution can be found
with relative ease if it is the only attractor in the phase space.
The difficulty arises when stationary and pulsating solutions
coexist. Then the choice of the initial conditions becomes
crucial.

As we typically used localized initial conditions with spa-
tial radial symmetry, the final result was the stationary one.
The pulsating solutions become unveiled as we move to a
parameter region where the stationary bullets are unstable.
Moving back in the parameter space and keeping the pulsat-
ing solution as the initial condition allowed us to reveal the
complete branch of pulsating bullets, even if a stationary
bullet existed for the same set of parameters. We started the
process by finding a set of parameters with marginal stability,
where both types of solutions existed for an extended
distance of propagation.

Figure 3 shows an example of the Q�z� curve for the
evolution of a localized structure when both stationary and
pulsating solutions are marginally stable. The initial condi-
tion in this case is similar to that given by Eq. �3� and it is
not a stationary solution. However, it converges relatively
quickly to a stationary bullet, due to the initial radial

symmetry of the solution. Then, it remains in a steady state
regime that lasts up to z=300. It happens that this steady
state is unstable relative to perturbations which destroy the
radial symmetry in the �x ,y� plane. Perturbations in this case
are due to the unavoidable accumulation of numerical errors
which seeds the instability.

At z around 300, an instability develops and it breaks the
spatial radial symmetry of the solution. This instability
causes the solution to enter into a pulsating regime. Pulsa-
tions continue through the region indicated by a gray stripe
in the figure. Pulsations are related to the tendency of the
solution to gain an elliptic profile and to split the initial lo-
calized state into a double bullet complex. Thus this process
is nothing other than the spontaneous transformation of the
optical bullet into a bound state of two bullets with an oscil-
lating separation distance between them. Simultaneously,
there is a periodic variation of the temporal profile.

The third stage of the evolution in this example after z
�520 shows the instability of the double bullet complex as
well. The number of bullets spontaneously created increases
and the structure is further transformed into a complicated
pattern that fills the whole numerical grid. The fact that both
the steady state and the pulsating solution exist for extended
intervals of z reveals the situation when each type of solution
is at the margin of stability. Both the stationary bullet and
double bullet complex could be stable at nearby points in the
parameter space, as we confirm below.

A stable double bullet complex is a pulsating solution of a
dynamical system. It is also a limit cycle in an infinite-
dimensional phase space �see Chap. 1 in �2��. When the pa-
rameters of the system are changed, the limit cycle is shifted
in the phase space. In numerical simulations, we can use
previously obtained pulsating solutions as initial conditions
for slightly shifted values of the parameters. When changing
�, we allow the optical field to evolve a certain distance
before it converges to the new limit cycle. In this way, we
can remove any transitory parts of its phase trajectory and be
sure that the new pulsating solution �or limit cycle� is stable.

Pulsations of double bullet complexes can be simple har-
monic or quasiperiodic. The addition of new frequencies into
the motion occurs at certain values of the equation param-
eters and can be viewed as a bifurcation. In principle, pulsa-
tions of a single bullet can keep the spatial radial symmetry
or destroy it. In the former case, the bullet changes its size
but stays symmetric. We have not observed this type of pul-
sation for the range of parameters that we used. In the latter
case, pulsations are attributed to double bullet complexes
before the structure actually splits completely into two sepa-
rate bullets. In our simulations we observed the opposite pro-
cess: the merging of two separate bullets into a double bullet
complex.

V. DOUBLE BULLET COMPLEXES WITH CONSTANT
ENERGY

One type of the complexes that we have observed consists
of two bullets tightly bound together and rotating around
each other. In addition to rotations, the spatial separation
between the two bullets can change �i.e., there are vibra-

FIG. 3. Energy, Q, vs propagation distance z of a localized so-
lution for the set of equation parameters written inside the figure.
The initial condition is radially symmetric, thus exciting a station-
ary radially symmetric bullet �at 10�z�300�. This plot also shows
the transition �at z�300� from stationary to pulsating behavior of
the optical bullet and a further instability �at z�520� leading to a
chaotic pattern.
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tions�. The latter is followed by oscillating modifications in
the temporal profile. The amplitude of these vibrations
can vary, depending on the equation parameters. In a limiting
case, the amplitude of the vibrations can go to zero, leaving
the complex rotating in the plane �x ,y�, but with a fixed
profile both in space and time. The energy Q for these
solutions is constant, just as for stationary bullets.

An example of this type of solution is shown in Fig. 4. To
excite this double bullet rotating solution, we used, as the
initial condition, the pulsating solution that we found for a

different set of parameters �as the one shown below in Fig.
12�. Despite the complicated structure of the initial condi-
tion, it converges after a long process to a simple rotating
double bullet complex. The energy Q vs z for this conversion
is shown in Fig. 5. The final value of the energy �around 184�
is more than twice the energy of a single bullet �around 68�,
thus showing that the two bullets are tightly bound together
to form the rotating solution.

The rotation has a fixed angular velocity but can occur in
either direction �clockwise or counterclockwise�, which is
determined by the initial conditions. The distance between
the two maxima in the solution does not change in the final
stage of the evolution. This solution does exist for the same
set of parameters as the single optical bullet. Each formation
is stable. Thus they can coexist. A comparison of the spatial
profiles of the two solutions in Fig. 6 shows that the complex
is indeed a composite state of two stationary optical bullets.
The match of the temporal profiles for these two types of
solutions �not shown� is almost perfect. The distance be-
tween the two bullets in the complex is comparable to the
width of each soliton. Hence the amplitude in the center of
the complex is comparable to the maximum amplitude of
each soliton. That means that the bond between the two bul-
lets is strong, meaning that its energy, Q, is well above twice
the value of the energy of a single bullet.

In order to check that the double bullet complex can be
excited from a variety of initial conditions, we used two
stationary bullets located far apart from each other but still
interacting through their tails. If their relative phase differ-
ence is chosen properly, they do attract and the solution is
transformed into a bound state with the resulting curve Q vs
z shown in Fig. 7. The two horizontal lines in this figure at
Q�68 and Q�184 mark the fixed energies Q of the single
bullet and double bullet complex, respectively. The two os-
cillating curves correspond to the evolution of two single
optical bullets, initially located at the same finite distance,
but with different relative phase difference, namely +10° and
−10°, respectively.

These two initial conditions converge to a clockwise and a
counterclockwise rotating complex, respectively. The start-

FIG. 4. Spatial profile ��x ,y , t=0,z� of a rotating double bullet
complex. The distance z is shown against each plot. The energy Q
for this solution does not depend on z.

FIG. 5. Energy Q vs propagation distance z for the process of
excitation of a double bullet purely rotating complex shown in Fig.
4.
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ing energy Q of our initial condition is exactly twice the
energy of a single bullet. The resulting energy Q after the
collision has taken place and the merging process has fin-
ished �around z=300–400� is clearly the same for the two
cases. We can notice that this final energy Q=184 is consid-
erably higher than twice the energy of a single bullet. That
means that the binding energy for the complex is positive.
The bound state of two bullets can be considered as an op-

tical molecule, since it possesses long term stability. More-
over, the evolution process described above is analogous to
the synthesis of a diatomic molecule out of its two atomic
constituents.

VI. DOUBLE BULLET COMPLEXES WITH A SINGLE
PERIOD OF OSCILLATIONS

Let us see, in this section, how the analogy with a mol-
ecule can be continued, with the possible existence of vibrat-
ing complexes. Indeed, double bullet complexes can be in a
ground state with fixed energy or in an excited state with the
energy Q oscillating. In particular, we obtained two-bullet
complexes with a single period of oscillation between them.
The energy Q for these complexes is a simple periodic func-
tion of z. These oscillations are shown in Fig. 8�a�. Oscilla-
tions of the energy are caused by the change in the distance
between the bullets as the complex evolves in z. The relative
separation is shown in Fig. 8�b�. This curve is also a simple
periodic function of z. As we can see, the maximal values of
Q occur when the separation between the bullets, 	, is also a
maximum. This happens just because the size of the complex
increases, thus requiring more energy to support it.

Each bullet forming the complex moves in the �x ,y�-plane
along almost a circular trajectory. However, the two bullets
rotate around two different points. These points, in turn, ro-
tate slowly around the common “center of mass” making the
overall motion complicated. This relative motion is clearly
seen in Fig. 9 for z from 0 to 50. The average orientation of
the complex in the plane �x ,y� is slowly rotating, similar to a
precession motion. Vibrations in the spatial domain combine
with pulsations in time. The latter have the largest amplitude

FIG. 6. Profiles ���x ,y=0, t=0,z�� of two single optical bullets
�solid lines� superimposed on the profile of the rotating double bul-
let complex �dashed line�. Both formations are stable for the same
set of equation parameters. Parameters are written inside the figure.

FIG. 7. Energy Q vs z for the process of excitation of a double
bullet complex when starting with two well-separated single bullets
moving towards each other. The two curves correspond to the evo-
lution of the two single bullets with a relative phase difference of
10° �solid line� and −10° �dashed line�. These initial conditions
result in a clockwise and a counterclockwise rotating complex,
respectively.

FIG. 8. �a� Energy Q vs z for a double bullet complex with a
single period oscillation. �b� The separation between the two
maxima in a two bullet complex. This curve is a single periodic
function in phase with the curve in �a�.
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at the spatial center of mass of the molecule.
The double bullet complex with oscillating energy can be

obtained from the stationary structure by changing the pa-
rameters of the system. Thus there is a boundary in the
parameter space that separates the two types of structures.

VII. DOUBLE BULLET COMPLEXES WITH TWO
OSCILLATION PERIODS

Oscillations in Fig. 3 observed between z=400 and 500
explicitly reveal quasiperiodicity. There are two periods of
oscillation rather than one. The only problem is the instabil-
ity of this periodic solution. To make it stable, we need to
change the parameters of the system. Thus, taking as initial
condition the pulsating solution for the parameter �=0.68
shown in the gray area in Fig. 3, and reducing � slightly, we
were able to obtain a stable oscillating double bullet complex
with two periods of oscillation.

Figure 10 shows Q vs z for a pulsating complex when �
=0.67. The rest of the parameters have the same values as
the case shown in Fig. 3. Oscillations of the Q�z� curve in
Fig. 10 are similar to those in Fig. 3, except that now they
last indefinitely along z. The two periods involved in this
motion are clearly visible. The shorter period is approxi-
mately four units in z and the longer period is approximately
20 units. One longer period in Fig. 10 is marked by a solid
line. Specifically, it is the part of the curve from z=80 to 100.
The plots given below are made for this part of the evolution.

In order to reveal the nature of the oscillations of the
optical bullets, we plot separately the evolution of the tem-
poral and spatial profiles. The temporal profile oscillations of
the optical field at �x ,y�= �0,0� are shown in Fig. 11. The

shape of the bullet changes periodically, but remains sym-
metric in t. The shorter period is clearly visible, while the
longer one cannot be appreciated in this figure, although it
influences the shape.

Three spatial field profiles at t=0 for this simulation are
shown in Fig. 12. They correspond to z=80, 82, and 84,
respectively. We can see that the radial symmetry in the
�x ,y�-plane is broken and the solution is a double bullet com-
plex, rather than a single bullet. The complex exhibits an
internal dynamics which includes a clockwise rotation
around the origin.

In addition to rotation, the separation between the two
bullets in the complex oscillates. To see this, we show, in

FIG. 9. Trajectories of the maxima of the two bullets that form
a stable complex, in the �x ,y�-plane. The trajectories are shown for
half of the distance presented in Figs. 8�a� and 8�b�, i.e., for z in the
interval �0,50�.

FIG. 10. Q vs z for the double bullet complex with the values of
the parameters written inside the figure. The curve reveals double
frequency pulsations. The part of the evolution marked by the solid
line, from z=80 to 100, is represented in detail in the following
three figures.

FIG. 11. Evolution of the temporal field amplitude profiles
���0,0 , t ,z�� at �x ,y�= �0,0�. The distance z changes from 80 to 100
�continuous line in Fig. 10�.
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Fig. 13, the trajectories of the maxima of the optical field.
There are two of them on the �x ,y� plane, and they occur at
t=0. They roughly indicate the position of the two bullets in
the soliton complex. The trajectories are shown by the dotted
and dashed lines, while z changes in the interval �80,100�.
The initial positions of the maxima at z=80 are shown by the
two gray dots �1,2�. The arrows indicate the direction of the
motion, as well as the final position of the maxima at z
=100. The trajectories look like polygons rather than circles,
thus clearly indicating the periodic change in the relative
separation between the two maxima. They also indicate that
in the three dimensions �defined by the space-time variables

x ,y , t�, the two bullets always appear to be separated.
On the other hand, experimental measurements could

show different behavior. Namely, the quantity that would be
detected by a charge coupled device camera with a time re-
sponse slower than the pulse duration is the field intensity,
���x ,y , t ,z��2, integrated over time t, i.e.,

I�x,y,z� = �
−�

�

���x,y,t,z��2dt . �5�

The trajectory for one of the two maxima of this quantity is
shown in Fig. 13 by the solid line �the trajectory correspond-
ing to the other maximum is similar�. This solid line passes
through the origin, in contrast to the dashed and dotted lines.
When the trajectory passes the origin, the solution must be
more elongated in time, thus concentrating the energy closer
to the common center of the two bullets.

The two periods of oscillation in the composite solution
can be related to a complicated motion inside the complex.
One of the motions is the oscillation of the two bullets rela-
tive to each other in space, and the other motion involves the
pulsations of the shape in the t-domain. In a nonlinear prob-
lem, these two motions are inseparable and each period can
be found in either of the above-mentioned motions. Both
periods are revealed in the Q�z� vs z curve of Fig. 10. Double
periodic motion of the coupled bullets appears from the
single period when we change the equation parameters. The
appearance of each new periodic component in the motion
can be attributed to a bifurcation. This feature of pulsating
solitons in �3+1�D dissipative systems deserves further
study.

FIG. 12. Three spatial field amplitude profiles ���x ,y ,0 ,z�� at
t=0 and z=80, 82, and 84, respectively.

FIG. 13. Trajectories of each of the two maxima �dashed and
dotted lines� of the solution shown in Fig. 12 from z=80 �big gray
dots� to z=100 �end of the lines with arrows�. The solid line shows
the trajectory for one of the maxima of the integrated intensity
given by Eq. �5�. The starting point is indicated by the black square.
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VIII. REGIONS OF EXISTENCE OF OPTICAL BULLETS
AND DOUBLE BULLET COMPLEXES

Optical bullets do exist in finite regions in the parameter
space. Each type of double bullet complex also occupies a
small finite region. Earlier, in the case of �1+1�D solitons,
we identified at least two independent regions which corre-
spond to qualitatively different dissipative solitons �13�.
Namely, we determined two separate regions for stable sta-
tionary and pulsating solitons, respectively. The structure of
similar regions in the �3+1�D case can be much more in-
volved. It would be hard to identify all these regions in the
whole six-dimensional parameter space. Thus we started
with a single point where we were able to find a stable bullet,
and extended it step by step to a closed region for a family of
these solutions.

To begin with, in the search for optical bullets, we re-
stricted ourselves to varying only two parameters �namely �
and �� while fixing the four others. The results of this search
are shown in Fig. 14. In fact, the dashed area in Fig. 14
shows a 2D section of the region in the 6D parameter space
where we found stable single optical bullets. The smaller
gray region is the one which admits stable double bullet
complexes.

The example of optical bullet dynamics presented in Fig.
3 corresponds to the equation parameters at the point shown
by the black dot in Fig. 14. This point is located right above
the edge of the stability region for both stationary bullets and
double bullet complexes. Strictly speaking, both objects are
either neutrally stable or weakly unstable at this point. As a
result, the localized initial condition cannot lead to any stable

structure. Nevertheless, pulsating complexes or stationary
bullets may exist for a finite distance of propagation, as we
observed in our simulations. Restricting the type of pertur-
bations in the simulations would allow us to excite each type
of optical bullet solution for a finite distance z. Each type of
localized solution becomes stable just below the black point.

Another interesting observation that follows from Fig. 14
is that the region of existence of stable double bullet com-
plexes resides completely inside the region of existence of
stationary single bullets. Double bullet complexes in the
anomalous dispersion regime mainly coexist with stationary
bullets. This is hardly surprising because, to have a stable
composite state of two bullets, one would expect that each of
them should be stable.

A consequence of this coexistence is that, at certain con-
ditions, there can be transitions from one type of solution to
another just as in the case shown in Fig. 3. In particular,
if we freeze the radial symmetry of the solution, the double
bullet complex may disappear and the stationary single
bullet will be excited. In principle, the two regions may over-
lap only for the set of the parameters that we have chosen.
Changing some of the other four parameters of the equation
may separate the two regions. However, this study requires
tedious work and an enormous amount of numerical
simulations.

The two regions in Fig. 14 correspond to the anomalous
dispersion regime, as we took D being positive, D= +1. We
know that dissipative solitons in the �1+1�D case do exist in
the normal dispersion regime as well �12�. In the latter case,
the balance between gain and loss plays a major role in the
formation of localized structures. We also proved recently
the existence of stable �3+1�D dissipative optical bullets in
the normal dispersion regime �8�. Thus, in the present work,
we studied regions of soliton existence for D=−0.1. Prelimi-
nary results are shown in Fig. 15. We keep the same notation
for the region with double bullet complexes, as well as for
the region with single stationary bullets. This plot seems to
be similar to the one presented in Fig. 14. However, the
values of the parameters for each region are shifted. In addi-
tion to the change of the parameters, we notice that the re-
gions for double bullet complexes and stationary single bul-
lets do not completely overlap. There is a region where only
double bullet complexes exist �gray area� as well as a com-
mon region of simultaneous existence for two types of soli-
tons. A more detailed study of soliton dynamics in this case
will be presented elsewhere.

IX. DISCUSSION

In this paper, we have studied stationary bullets and vari-
ous types of double bullet complexes �DBC�. An important
property that we found is that single bullets and DBCs coex-
ist for a relatively large range of the system parameters that
we could explore numerically. This coexistence indicates bi-
stability. At the edge of the above regions when bullets are
marginally stable, we can observe spontaneous transforma-
tions of single bullets into DBCs after relatively long propa-
gation distances. In addition to regions of bistable coexist-
ence, we have also found regions of parameters where only

FIG. 14. Region of existence of stable stationary optical bullets
in the �� ,��-plane �hatched area�. The gray area shows the region of
existence of stable double bullet complexes. The black dot located
at the common edge of the two regions corresponds to the numeri-
cal example shown in Fig. 3. Bullets and double bullet complexes
are marginally stable at this point.
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single bullets or double bullet complexes do exist. With these
features and the ability to control some of the parameters of
the system, we can create a given type of soliton species
avoiding any spontaneous transformations.

No doubt, structures more complicated than double bullet
complexes can also be found. In particular, we reported ear-
lier on processes of temporal elongation of bullets �transfor-
mation into “rockets”� and further instabilities that lead to
chaotic patterns �8�. Three and more bullets can comprise a
variety of complexes that have to be classified in a way simi-
lar to the case of DBC. In this sense, our work can be con-
sidered to be just a beginning. These preliminary studies
show that dissipative systems can serve as a playground for
studying the rich dynamics of �3+1�-dimensional structures.

Our present study confirms once again the fact that com-
plicated patterns in dissipative systems are composed of el-
ementary building blocks �11�. The latter are essentially soli-
tons. As a simplest example, let us recall the case of
pulsating solitons in the �1+1�D case. Pulsating dissipative
solitons �13� have a composite structure. Namely, they con-
sist of two fronts that periodically change the distance be-
tween them. Another example of �1+1�D pulsations is the
case of vibrating temporal soliton pairs that are considered
recently in �14�. Similarly, pulsating solitons in the �3+1�D
case also consist of two simpler objects. They are double
bullet complexes. Pulsations are caused by rotations and pe-
riodic changes of the distance between the two bullets. Con-
sequently, the �3+1�D case admits more complicated dy-
namics, because more degrees of freedom are involved in the
problem.

The double bullet complexes that we observed always ro-
tate. Also, the phase difference between the two maxima in
each complex is zero. We have not been able to find any

complexes with fixed orientation. We know that two in-phase
solitons of the nonlinear Schrödinger equation attract each
other. Thus it is tempting to explain the stability of the com-
plex by considering that attractive forces compensate for the
centrifugal ones. However, the properties of dissipative soli-
tons are different from conservative ones. Even in the
�1+1� dimensional case �15�, there are several soliton bound
states with various separations. Thus the stability of the
double bullet complex cannot be easily explained by using a
simple particlelike model. Methods similar to those de-
scribed in Ref. �15� could help in finding stable separation
distances between the bullets. However, the rotations result
in additional complications in the �3+1�D case, so that the
problem becomes much more involved.

X. CONCLUSIONS

In conclusion, based on numerical simulations, we have
presented examples of single stable optical bullets and
double bullet complexes in dissipative systems modeled by
the 3D complex cubic-quintic Ginzburg-Landau equation
with an asymmetry between the space and time variables. We
showed that the pulsating solutions in this model can be
regarded as being formed by two single stationary bullets
that rotate around each other. At the same time, the separa-
tion between the two bullets oscillates in most of the studied
cases, thus creating a vibrational motion which is rather
complicated. Three types of these double bullet complexes or
“optical molecules” are studied, as well as ways to excite
them.

In particular, we showed how both clockwise and anti-
clockwise rotating double bullet molecules could be formed
out of the phase-controlled interaction of two single bullets.
The terminology “molecule” is justified by the high stability
of complexes, when the parameters of the system are ad-
equately chosen. The dynamics of optical bullets can be con-
trolled by the choice of the system parameters. There is a
region of parameters where both a single bullet and a double
bullet complex are marginally stable, so that spontaneous
transformation between them is possible. We studied, in de-
tail, regions of parameters where coexistence of the two
stable dissipative soliton species is possible. Although no
complete mapping of the parameter values could be per-
formed for obvious computing reasons, both normal and
anomalous regimes of chromatic dispersion are shown to
provide regions of coexistence between a stable bullet and a
double bullet complex.

These regions of coexistence can provide a fertile ground
for future investigations, since the bistability between the
optical bullet and the double bullet complex could be used to
switch to the desired state using an outside control beam.
Also, larger stable “light bullet molecules” comprising more
than two bullets are expected from adequately designed in-
teractions between, for instance, a single and a double bullet
complex.

FIG. 15. Region of existence of stable stationary optical bullets
in the �� ,��-plane �hatched area� for the normal dispersion case
�D=−0.1�. The gray area shows the region of existence of stable
double bullet complexes.

SOTO-CRESPO, AKHMEDIEV, AND GRELU PHYSICAL REVIEW E 74, 046612 �2006�

046612-10



ACKNOWLEDGMENTS

The work of J.M.S.C. was supported by the M.E.y C.
under Contract No. BFM2003-00427 and FIS2006-03376.

N.A. acknowledges support from the Australian Research
Council and Ph.G. acknowledges support from Agence
Nationale de la Recherche. The authors are grateful to Dr.
Ankiewicz for a critical reading of the manuscript.

�1� G. Nicolis and I. Prigogine, Self Organization in Nonequilib-
rium Systems—From Dissipative Structures to Order Through
Fluctuations �Wiley, New York, 1977�.

�2� Dissipative Solitons, edited by N. Akhmediev and A. Ank-
iewicz �Springer, Heidelberg, 2005�.

�3� Y. Silberberg, Opt. Lett. 15, 1282 �1990�.
�4� N. N. Rosanov, Spatial Hysteresis and Optical Patterns

�Springer, Berlin, 2002�, Chap. 6.
�5� J. M. Soto-Crespo, N. N. Akhmediev, and V. V. Afanasjev, J.

Opt. Soc. Am. B 13, 1439 �1996�.
�6� J. M. Soto-Crespo, N. Akhmediev, and K. Chiang, Phys. Lett.

A 291, 115 �2001�.
�7� Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, Opt. Express

13, 9352 �2005�.
�8� J. M. Soto-Crespo, Ph. Grelu, and N. Akhmediev, Opt. Express

14, 4013 �2006�.

�9� L.-C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, Y.
S. Kivshar, and V. M. Perez-Garcia, Phys. Rev. E 67, 046610
�2003�.

�10� M. Stratmann, T. Pagel, and F. Mitschke, Phys. Rev. Lett. 95,
143902 �2005�.

�11� N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses
and Beams �Chapman & Hall, London, 1997�.

�12� J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S.
Wabnitz, Phys. Rev. E 55, 4783 �1997�.

�13� N. Akhmediev, J. M. Soto-Crespo, and G. Town, Phys. Rev. E
63, 056602 �2001�.

�14� M. Grapinet and Ph. Grelu, Opt. Lett. 31, 2115 �2006�.
�15� D. Turaev, A. Vladimirov, and S. Zelik, Weierstrass Institute

fur Angewandte Analysis and Stochastik, Report No. 1152,
Berlin, 2006 �unpublished�.

OPTICAL BULLETS AND DOUBLE BULLET COMPLEXES… PHYSICAL REVIEW E 74, 046612 �2006�

046612-11


